hirax.net::Wveletで周期解析をしてみる ::(1998.12.27)

Wveletで周期解析をしてみる   share on Tumblr 

 音声・地震などの1次元信号や、画像等の2次元信号処理の解析というのはなかなか面白そうだ。そこで、周期ムラに対してWaveletをかけて周波数解析をする練習をやってみたい。また、短時間フーリエ変換とWaveletの比較もしてみたい。音声・地震などのデータはまた別にやってみることにして、今回は画像データを扱うことにする。ただし、いきなり2次元も何なので、画像データの周期(つまり1次元的な振動)に注目して、解析を行ってみたい。

 まずは、「周期ムラのある画像」と「周期ムラのない画像」の2種類の画像を作成する。画像はいずれも数式を用いて作成した。X方向に変化する縞模様であり、表.1のような演算式になっている。一応、2次元画像ではあるが、Y方向にはなんの変化もない。2つの数式を見比べてみると判るが、いずれも2項からなり、低周波数のSinと高周波数のSinからなっている。「周波数ムラのある画像」では、その低周波数のSinの中にさらにSinがあるので、周波数がある周期で変化していることになる。一見、「周波数ムラのない画像」の方でも低周波数のSinの内部にさらにSinがあるように見えるが、0が掛けられているので、実際には存在しないのと同じである。

表.1:画像を作成するために使用した演算式
 2つのSinからなり、その一方のSinの周期がムラ(一定の周期)をもっているもの。第二項目のSinの内部にさらにSinを入れることにより、周波数ムラを作っている。2つのSin波からなり、どちらの周期も正確なもの。第二項目のSinの中のSinは0をかけてあるので、何ら影響を及ぼさない。

 そのような数式に基づいて作成した画像を図.1に示す。なお縦軸がX軸であり、横軸がY軸である。図.2(b)では周波数ムラはないが、2つの周波数成分から作成されているため、うねりが生じている。

図.1:作成した原画像
 周波数ムラのある画像
 周波数ムラのない画像
図.1(a):
図.1(b):
 それでは、このような画像からX軸の方向に1次元データを抽出し、周波数解析をしてみる。Y軸方向にはなんの変化もないため、無視して良い。

 まずは、Wavelet変換である。図.2がその結果である。縦軸が周波数を示している。縦軸の上方向が高周波を示し、下方向が低周波を示している。また、横軸が原画像のX方向である。白は強度が小さいことを示し、黒は強度が強いことを示している。
 いずれの画像も2つの周波数成分からなることが一目瞭然である。また、図.2(a):「周波数ムラのある画像」の方では低い周波数成分の方が、さらにある周期で周波数が変化していることがわかる。

図.2:Wavelet解析を行ったもの (Daubechiesの6次のCoifletFilterを使用)
 周波数ムラのある画像
周波数ムラのない画像
図.2(a):
図.2(b):

 同じWavelet変換でも異なるFilterを用いてみると、結果は異なる。例えば、図.3がその例である。こちらの方が「周波数ムラ」がどのように生じているかを見るにはいいかもしれない。

図.3:Wavelet解析を行ったもの (Daubechiesの6次のLeastAsymmetricFilterを使用)
周波数ムラのある画像
周波数ムラのない画像
図.3(a):
図.3(b):

 それでは、Wavelet変換ではなくて、フーリエ変換を用いて周波数解析を行ってみる。先ほどの1次元データの全領域に対してフーリエ変換をかけてみる。その結果が図.4である。ここで、横軸が周波数を示し、右側が高周波数を示し、左側が低周波数を示している。縦軸は強度である。
 このフーリエ変換の場合も、2つの画像が2つの周波数成分からなり、図.4(a):「周波数ムラのある画像」では低周波数成分がぶれているのはわかる。しかし、その周波数ブレがどのようなものであるかまでは、わからない。

図.4:全領域にFFTをかけて、周波数解析を行ったもの
周波数ムラのある画像
周波数ムラのない画像
図.4(a):
図.4(b):
 それでは、短時間フーリエ変換をかけてみる。先ほどの1次元データに対して前の方から64点ずつ、位置をずらしながらフーリエ変換を行う。このようにすることによって、ある領域の周波数解析を行うことができる。その結果を図.5に示す。ここで、黒は強度が小さいことを示し、白は強度が大きいことを示している。横軸は原画像のX方向を示し、縦軸が周波数を示している。縦軸の上方向が高周波数を示し、下側が低い周波数を示している。結果はWaveletの解析と同様になっている。
 なお、単純のためにウィンドー処理はしていない。そのために悪影響は当然出てしまう。

図.5:短時間FFTをかけたもの
周波数ムラのある画像
周波数ムラのない画像
図.5(a):
図.5(b):

 単なる全領域にわたった周波数解析と、位置と周波数が同時にわかる解析の違いは非常に大きい。使いこなすのはなかなか難しそうだが....

この記事と関係がある他の記事