hirax.net::Keywords::「表面張力」のブログ



2000-10-30[n年前へ]

しょんべん小僧 

 表面張力により、逆流する現象も無視できないのではないかとのウワサ。う〜む、これは「お笑いパソコン日誌」の-猛烈に寒い朝、寝ぼけ眼でオシッコをしようとして、なぜか逆流した経験-と通じるのだろうか?表面張力を無視できないような場合を考えてみるに(以下略)。また、雫が落ちても簡単にふき取れるように、普通の小便器にはつるつるの「汚垂れ石」が装備されているはずとのウワサ。 from mail. Thank you.(リンク

2001-01-27[n年前へ]

オッパイ星人の力学 仏の手にも煩悩編 

時速60kmの風はおっぱいと同じ感触か?

 本サイトhirax.netは「実験サイト」というジャンルに分類されることが多いようである。何が実験で、何が実験でないのかは私にはよくわからないのだが、とにかく「実験サイト」と呼ばれるサイトは数多くある。そして、その数ある実験サイトの中でも、人間そして愛について日夜取り組んでいるサイトの一つが「性と愛研究所」である。

 その「性と愛研究所」を読んでいると興味深いことが書いてあった。テレビ番組の「めちゃめちゃイケてる!」の中で何でも「時速60キロの風圧はおっぱいの感触である」と言っていたらしい。そしてまた、「性と愛研究所」では「おっぱいの感触と風圧に関する考察」の中で、「時速60kmでは全然おっぱいの感触ではなくて、ちょうど時速100kmを境に急におっぱいの感触を感じます。」というメールを紹介しながら、

「時速100kmの風では、本物は触れないけどお手軽に疑似体験、名付けて『プリンに醤油でウニ』ではなくなってしまう。それでは、まるで『キャビアにフォアグラでトリュフの味』だ。青少年のために疑似おっぱいを探してあげる必要があるな。」
と結論づけている。

 この「時速60kmの風」現象は「できるかな?」的にとても興味深いと思われるので、今回じっくりと考えてみることにしてみた。そして、この結論に何らかのプラスαをしてみたいと思う。

 そう、前回「オッパイ星人の力学 第四回- バスト曲線方程式 編- (2001.01.13)」でオッパイの表面で働いている力について考えてみたのは、実は単に今回・そしてさらに次回の話のための準備だったのである。(さて、ちなみに今回は会話文体をメインに話が進む。「性と愛研究所」ではないが、この手の話は会話文体の方が書きやすいように思うし、私のバイブル「物理の散歩道」でも「困ったときの会話文体」と言われていたので挑戦してみた次第である。言うまでもないが、AもBも私が書いてはいるが、私自身ではない。)
 

A : 「東名高速で出勤途中に確認してみたんだが、やはり時速100kmあたりが妥当な感じだったな。」

B : 「何を根拠に妥当なのかがよくわからないが、確かに時速60kmでは手に何かが触っているという感触すらないな。それにしても、哀しい出勤の景色だぞ、それ。」
A : ほっとけ!だけど、少し考えてみると、このおっぱい(ニセモノ)の感触問題は結構面白く、技術的にもなかなかに深い話だと思うんだよ。」
B : 「はぁそうですか…、としか言いようがないな。」
A : まぁ、聞け。何しろこのおっぱい(ニセモノ)の感触問題には流体力学のエッセンスがぎっしりと詰まっているんだからな。」
B : 「そんな話は聞いたことはないが、とりあえず聞かせてもらおうか。」
A : 「このおっぱい(ニセモノ)の感触問題を解くためには、とりあえず車の窓から手を出したときの指の周りの空気流を計算すれば良いわけだ。」
B : 「ちょっと待て。何で指の周りなんだ。手のひらじゃなくて?」
A : 「簡単なことさ。試しにおっぱいを揉む仕草をしてみろよ。」
B : 「こ、こうか?あぁ?手のひらじゃなくて指で揉んでるっ!
A : 「そうだろ。何故かわからないが、おっぱいを揉む仕草=Mr.マリックが超魔術をかける時のような指使いらしいんだよ。」
B : 「うむ、確かにそのようだな。」
A : 「だから、時速60kmの風からおっぱいの感触を受けているのは指先だと考えるのが自然だろ。それなら、とりあえず下の図のような「指の間を抜けていく空気の流れ」を計算してみれば、おっぱい(ニセモノ)の感触問題が解けるわけだ。」
B : 「実写の手に二次元の計算結果を三次元的に合成するという凝った処理が、実にクダラナイことに使われている例だな…」
車の窓から手を出して、指の周りの空気流を計算しよう
  高速で走る車の窓から手を出して、その手の指の間を抜けていく空気の流れを計算しよう。

 鉛直方向の指の等方性を考えて、右の図に示すような指を輪切りにするような水平面のみを考える。

 こんな写真を撮るときに、自己嫌悪に陥りがちなのは何故だか知りたい今日この頃。

A : 「こういう「空気の流れ」ような流体の力学は、ニュートンのプリンキピアに始まり、オイラーとベルヌーイにより非圧縮・非粘性の理想流体の運動方程式とエネルギー保存則が導かれた。それがオイラーの運動方程式とベルヌーイの式だ。オイラーの運動方程式はちなみにこんな感じだ。」
 

オイラーの運動方程式

加速度 = 外力 + 圧力勾配力
 
v : 速度
s : vに沿ってとった座標
t : 時間
p : 圧力
K : 外力

A : 「基本的には「加速度 = 外力 + 圧力勾配力」という形だな。この非圧縮・非粘性の理想流体の場合はラプラシアンがゼロのポテンシャル流れと呼ばれる単純な流れになる。試しに、そんな場合をNast2Dを元にしたプログラムで計算してみた結果はこんな感じになる。ホントはこの計算自体は完全な理想流体ではないのだが、まぁ大体はこんな感じだ。」

B : 「おっ、あっという間に計算したな。」
A : 「まぁ、ポテンシャル流れならエクセルでもちょちょいと計算できるくらいだからな。ちなみに、これは窓から手を出してしばらくしてからの空気の流れだ。」
 
粘性が(ほとんど)ない時の指の周りの空気の流れ

A : 「で、どうだ?」

B : 「いや、どうだ、と言われても困るが、なんかキレイだな。だけどちょっと小さくて見にくいなぁ。」
A : 「そう言われれば確かにそうだ。じゃぁ拡大してみるか。」
 
粘性が(ほとんど)ない時の指の周りの空気の流れ (拡大図)
空気は右から左へ流れている。いや、指が右から左へ移動していると言った方が良いか?
B : 「で、この結果から何がわかるんだ?」
A : 「この図で空気は左から右へ流れているわけだが、左端の空気の速度と右端の空気の速度は、実は同じなんだ。」
B : 「そう言われても、よくわからないが?」
A : 「指を通り過ぎてく空気は、指をとおる前後で運動量がそのまま変わってないってことさ。つまり、空気は指を通り過ぎる時になんら抵抗を受けてないってことだ。」
B : 「えっ?おかしいじゃないか、それなら逆に言えば指も空気から何の抵抗を受けないってことか?
A : 「そういうことだ。これがダランベールのパラドックスだ。」
B : 「じゃぁ、何か?この指先に感じるまぎれもないおっぱいの感触はだとでもいうのか!? そんなのオレは認めないぞ!」
A : 「まぎれもない、っていうほどのものでもないし、ニセモノおっぱい自体は何か一種の幻のような気もするが、もちろん感触自体は幻であるハズはない。そもそも、空気をサラサラな理想流体として取り扱ったところが間違っているわけだ。そこで、登場するのがナヴィエとストークスだ。彼らはオイラーの運動方程式に粘性を導入した。全てはおっぱいの感触を説明するため、だ。」
B : 「それウソだろ。ナヴィエとストークスが聞いたら怒るぞ。」
非圧縮流体に対するナヴィエ・ストークスの方程式

加速度 = 外力 + 圧力勾配力 + 粘性力
 
v : 速度
t : 時間
p : 圧力
K : 外力
μ: 粘性係数

A : 「見ればすぐわかるだろうが、この非圧縮流体に対するナヴィエ・ストークスの方程式は、最後に粘性項が入っている以外はオイラーの運動方程式と全く同じだ。」

B : 「なるほど。こうしてみると意外に簡単な式だな。」
A : 「あぁ、オイラーの運動方程式に粘性項が入っただけだからな。そのせいで計算はちょっと複雑になるが、最近のパソコンならノープロブレムだ。というわけで、粘性を考慮して計算してみた結果が次の図だ。」
 
 
粘性を考慮した指の周りの空気の流れ
B : 「おっ、ちょっと様子が違うな。何か、ジェットエンジンみたいに尾を引いてるぞ。」
A : 「そうだろ。指の後ろのl様子がずいぶんと違うだろう。で、これを拡大してみたのが次の図だ。」
 
 
粘性を考慮した指の周りの空気の流れ (拡大図)
B : 「左端の空気の速度はもちろんさっきと同じだが、指の後ろでは空気が渦巻いているし、右端の空気の速度は全然違うな。」
A : 「もっとリアルに、窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみた計算結果のアニメーションが次の図だ。指の周りに空気が渦巻いていく様子がよくわかるハズだ。」
 
車の窓から手を出して、指の周りの空気流を計算しよう
 窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみたもの。指の周りに空気が渦巻いていく様子がよくわかる。

 メッシュを細かく切ったおかげで、計算結果は1GB弱。なんてこったい。

B : 「指が空気の中を走り抜いていく様子がよくわかるな。確かにこれなら、空気の抵抗を受けまくりだな。」
A : 「そうだ。空気は指から力を受けるし、逆に、指は空気からしっかりと力を受けるわけだ。」
B : 「なるほど、この計算結果は指先に感じるまぎれもないおっぱいの感触を説明しているわけだな。いい感じじゃないか。流体力学そして粘性項さまさまじゃないか!」
A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「おやっ?ちょっと待てよ!これでは、ただ現実を説明してみただけで、何の解決にもなってないぞ!時速60kmと時速100kmの風の感触の差を説明しているわけでもないし、青少年のためのもっと安全な擬似おっぱいを提供しているわけでもない!」
A : 「いや、それがそういうわけでもない。実はこの先があるんだ。このナヴィエ・ストークスの方程式の解はレイノルズ数という無次元数によって決定されるんだ。今回の場合で言うと、レイノルズ数は「指の直径x 車の速度 / 流体の運動粘性率」という形になる。そして、このレイノルズ数が大きくなるほど渦が延びていくんだ。」
B : 「なるほど、わかってきたぞ。つまりあれだな。時速60kmから時速100kmに速度を上げれば、それに応じてレイノルズ数が大きくなって、空気の渦もおおきくなるし、おっぱいの感触も確実なものになるわけだな。勉強になるな。」
A : 「う〜ん、実際には密度の違いの方が大きいんだが、ナヴィエ・ストークスの方程式の理解としてはそれでいいかもな。あと、単にレイノルズ数を大きくしたかったら指を太くする、っていうのでもいいわけだ。」
B : 「そう言われても指の太さはなかなか変えられないしなぁ。」
A : 「指サックとか色々手はあると思うが、もっといい方法がある。さっきの式を眺めてみれば流体の運動粘性率が小さくなれば、レイノルズ数は大きくなる。例えば、水の運動粘性率は空気のそれの十五分の一だ。」
B : 「ってことは、水の中だったら、レイノルズ数も大きいし、密度も大きいし、指先に抵抗を受けまくりってことだな。すると、水中で手を動かしてみれば、それは空気中の高速クルージングと同じってことになるな!」
A : 「そうさ、風呂の中で手をひとかきすれば良いだけの話さ。何もわざわざ時速100kmの車の窓から手を出す必要はないんだ。実際、風呂の中で確かめてみたけど、なかなかイイ感じだ!」
B : 「時速100kmで走る車の窓から手を出すのに較べれば、風呂の中で手をひとかきすれば良いだけなんて、まさに青少年のためのもっと安全な擬似おっぱいだな!」
A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「それはもういいっ言ってるだろ。」
A : 「ところで、ふと考えてみたことがあるんだ。さっき、指を太くすれば遅い速度でもレイノルズ数が大きくなるって言っただろ。東大寺の大仏なんかかなり指が太いじゃないか。」
B : 「確かに、そうだな。」
東大寺の大仏 (想像図)

A : 「今調べてみると、大仏の掌の長さは256cmだ。つまり普通の人間の10倍くらいある。だったら、指の太さも10倍はあるだろう。ってことは、ほんのそよ風が吹いただけでも、大仏の手にはしっかりとしたおっぱいの感触が感じられているんじゃないのかな?」

B : 「単に手が大きいから空気の抵抗も大きいだけどいう気がしないでもないが、指の長さもでかいしさぞかし超巨乳の感触かもしれんな!そう考えると、あの大仏の手も何か実にイヤラシイ手つきに見えてくるから不思議だな!」
A : 「う〜ん、悟りを開いているから、指先のヘンな感触なんかには惑わされないんだとは思うけどな。しかし、案外と仏もそんな煩悩と日夜闘っていたりするのかもしれないなぁ。しかも、その煩悩がホントーにあるのかもよくわからない幻のような擬似おっぱいってところが面白くないか?大仏の指先は二十一世紀の煩悩そのものを暗示しているのかもしれん。仏の手にも煩悩ってところだな!」
B : 「言いたい放題だな、全く。」


 さて、今回は「オッパイ星人の力学第四回 - バスト曲線方程式 編- (2001.01.13)」と繋がるところまで話が辿り着かなかった。おっぱいの表面張力、マボロシのような指先の流体力学、そして大仏の煩悩をめぐる大河ドラマは人生そのもののようにまだまだ続くのである。
 

2008-03-19[n年前へ]

「10万円バブル入浴剤」と「ムトーハップ」 

 武藤鉦製薬「610ハップ」10万円札をお湯に浮かべる「バブリーバブルバス」を、それぞれお湯に溶いたり浮かべてみた。ムトーハップはお湯に溶き、バブリーバブルバスの10万円札は、一枚だけお湯に浮かべてみた。

 硫黄と石灰が混じった「610ハップ」は赤褐色の液体だ。その、赤黄色の液体をほんの少しお湯に混ぜると、温泉そのままの「卵が腐ったような匂い」とともに、お湯が白く濁っていく(そんな過程を、下に動画で貼り付けてみた)。

 その実際の(人に対する)効果はよくわからないけれど、金属や浴槽が黒くなっていく効果はいやでも実感させられる(何しろ、ムトーハップを使った後の清掃はとても大変だ)。けれど、そんなムトーハップの白い湯に浸かっていると、心がどこか僻地の温泉の中にあるような気がしてくる。

 その一方で、「10万円バブル入浴剤」の方は、木の皮を剥いだような感じの触り心地・見た心地の「10万円」だ。たとえて言うなら、「(なぜか檜の匂いがする)白樺の皮を剥いで茶色の水彩絵の具で一万円札を描いた」ような入浴剤だ。この「例え」に賛同する人は皆無だと思うけれど、そんな実に”微妙”な感じだ。その入浴剤をかき混ぜていると、洗剤のような泡がたくさん出てくる。それは、まさに「バブル」な感じだ。そんなバブルなさまも、やはり、ケータイを使って動画で撮影してみた。

 「みんなの悩み事をさっぱり忘れさせてくれる空色のせんたく機を発明したタンネさん。だけど、タンネさんは、せんたく機の製造に追い詰められて、空色のせんたく機の中で悲しいロボットになってしまった」

   「すなの中に消えたタンネさん」

 心が汚れていると感じるとき、心が疲れていると感じるとき、その汚れや疲れは表面張力に満ちたバブリーな洗剤で落とすことができるのだろうか。それとも、そんなものは、昔ながらの入浴剤に浸かった方が落としやすいものだろうか。人それぞれ、"It's depends."で、たった一つの答えは、きっとどこにもないのだろう。

「ロボットになったらラクなこともあるのかな」

 もしも、もしも一つ確かなことがあるとしたら、色んなものが世の中にはある、ということかもしれない。

2008-05-30[n年前へ]

(加速度センサ対応)体感・実感バストシミュレータを作る 

 体感・実感バストシミュレータを作ってみました。アプリケーションのウィンドーを揺らしたり、(もしThinkpadユーザなら)PCを揺らしたりすると、その振動に応じた変形を計算・表示するというシミュレータです。下の動画はその(Windows上で動作する)アプリケーションを動かしている例になります。マウスでウィンドーを動かすと、その力(加速度)に応じた複雑な変形が生じたりすることが見て取れると思います。
 また、Thinkpadを持ち上げ、傾けてみたり・揺らしてみたりすると、その動きに対応する変形が生じるので、まるでバーチャルリアリティのようにその変形の因果関係を体感できるかもしれません。端的に言ってしまえば、このアプリケーションを動かしつつ胸の前でThinkpadを持って体を動かすと、その動きに応じた変形シミュレーション計算結果を刻々表示(レンダリング)する、なんていう遊びもできるわけです。

 不可思議に見える動きでも、案外こんな実験をしているうちに、その因果関係を実感・納得できるかもれいません。それが、「体感バストシミュレータ」だったりすると、ナニな感じは漂いますが、そんなクダらなさがこのサイトの一つの特徴でもあるので、(色々な視点から眺めた下の動画でも)適当に流し見しつつ・楽しんで頂けたら幸いです。

 このアプリケーション(バイナリ実行ファイル)はここに置いてあります。計算部はC++で適当・速攻で作り、(皮膚からの表面張力を働く)弾性・塑性的な性質を持つPartcleクラスを多数保持するBodyクラスにより、変形状態が計算される、という具合です。書き飛ばした部分を整理し、C++ Bodyクラスのソースも近々置いてくことにしようと思っています。

2010-07-10[n年前へ]

地表の重力下では「色付きシャボン玉はできない」は本当か!? 

 地表では色付きシャボン玉ができない、という話がありました。重力があるために、色成分をシャボン玉中になかなか均等に分散させることができないというわけです。そのため、「無重力の宇宙船の中でシャボン玉を吹いてみたら、綺麗な色付きシャボン玉ができた」という実験とか、重力が働く地表でも綺麗に色づくシャボン玉が開発された、というニュースがあったりしたように記憶しています。

 しかし、重力が働くとはいえ、そんなにも短い時間の中で、色成分がシャボン玉液中で下に沈んでしまうものでしょうか?せめて、シャボン玉を吹いき、それらがに舞うまでの短い時間くらい、色が混じったままでいてれはしないもだろうか?と感じ、色付きシャボン玉の実験をしてみることにしました。

 というわけで、まずは、100円ショップへ行き、シャボン玉セットを買い、水彩絵の具セットを買い、人のいない原っぱに行きました。そして、空の色に似あう深青色の絵の具をシャボン液に溶いて、何回も何回も空を眺めながらシャボン玉を吹き続けてみました。


 そして、その実験の結果わかったことは、「あっという間に、色が濃い部分はシャボン玉の下に動いてしまう」ということでした。しかも、シャボン玉を吹く時にはストローを下に向けて吹くものですから、最初のひとつめのシャボン玉の下部に色成分が集まって、そして、(多くの場合)その色成分が下に落ちて終わってしまうのです。だから、色付きシャボン玉を吹こうとすると、その下には小さな「青い絵の具の池」ができてしまうのです。

 色の成分があっという間に下に集まるのか、それとも、色成分は普通にシャボン液に分散しているけれど、シャボン液自体があっという間に下の方に集まってしまっているのかはわかりません。可能性としては、後者の方が高いようにも思います。つまり、ある程度の厚みがないとシャボン液は色が付いては見えないけれども、シャボン液に厚みを持たせる力力がないにも関わらず、重力が働く環境下ではシャボン液が厚いのはシャボン玉下部だけになってしまうのがおおもとの原因に思えますが、少なくとも、「地表では色付きシャボン玉ができない」という話は、確かに本当でした。今度は、膜厚が厚いシャボン玉を作り、色を付けることができるか実験してみようと思っています。

 そんなことを考えながら、色付きのシャボン液にストローをつけ、空を眺めながらシャボン玉を吹いいると、何だかいつもより青くカラフルなシャボン玉の集団を見ることができるように思えたのです。

地表の重力下では「色付き水風船はできない」は本当か!?








■Powered by yagm.net