hirax.net::Keywords::「微積分」のブログ



1999-09-01[n年前へ]

画像に関する場の理論 

ポイントは画像形成の物理性だ!?

 今回は、
夏目漱石は温泉がお好き? - 文章構造を可視化するソフトをつくる- (1999.07.14)
の回と同じく、「可視化情報シンポジウム'99」から話は始まる。まずは、「可視化情報シンポジウム'99」の中の
ウェーブレット変換法と微積分方程式によるカラー画像の圧縮および再現性について
という予稿の冒頭部分を抜き出してみる。「コンピュータグラフィックスを構成する画素データをスカラーポテンシャルあるいはベクトルポテンシャルの1成分とみなし、ベクトルの概念を導入することで古典物理学の集大成である場の理論が適用可能であることを提案している」というフレーズがある。

 着目点は面白いし、この文章自体もファンタジーで私のツボに近い。しかしながら、肝心の内容が私の趣向とは少し違った。何しろ「以上により本研究では、古典物理学の場の理論で用いられるラプラシアン演算を用いることで、画像のエッジ抽出が行えることがわかった。」というようなフレーズが出てくるのである。うーん。
 私と同様の印象を受けた人も他にいたようで(当然いると思うが)、「エッジ強調・抽出のために画像のラプラシアンをとるのはごく普通に行われていることだと思うのですが、何か新しい事項などあるのでしょうか?」という質問をしていた人もいた。

 また、話の後半では、画像圧縮のために、ラプラシアンをかけたデータに積分方程式や有限要素法などを用いて解くことにより、画像圧縮復元をしようと試みていたが、これも精度、圧縮率、計算コストを考えるといま一つであると思う(私としては)。

 画像とポテンシャルを結びつけて考えることは多い。例えば、「できるかな?」の中からでも抜き出してみると、

などは画像とポテンシャルということを結びつけて考えているものである。(計算コストをかけて)物理学的な処理をわざわざ行うのであるから、物理学的な現象の生じる画像を対象として考察しなければもったいない、と思うのである。

 現実問題として、実世界において画像形成をを行うには物理学的な現象を介して行う以外にはありえない。「いや、そんなことはない。心理学的に、誰かがオレの脳みそに画像を飛ばしてくる。」というブラックなことを仰る方もいるだろうが、それはちょっと別にしておきたい。

 「できるかな?」に登場している画像を形成装置には、
コピー機と微分演算子-電子写真プロセスを分数階微分で解いてみよう-(1999.06.10)
ゼロックス写真とセンチメンタルな写真- コピー機による画像表現について考える - (99.06.06)
で扱ったコピー機などの電子写真装置や、
宇宙人はどこにいる? - 画像復元を勉強してみたいその1-(1999.01.10)
で扱ったカメラ。望遠鏡などの光学系や、
ヒトは電磁波の振動方向を見ることができるか?- はい。ハイディンガーのブラシをご覧下さい - (1999.02.26)
で扱った液晶ディスプレイなどがある。そのいずれもが、純物理学的な現象を用いた画像形成の装置である。

 例えば、プラズマディスプレイなどはプラズマアドレス部分に放電を生じさせて、電荷を液晶背面に付着させて、その電荷により発生する電界によって液晶の配向方向を変化させて、透過率を変化させることにより、画像を形成するのである。

プラズマアドレスディスプレイ(PALC)の構造
(画像のリンク先はhttp://www.strl.nhk.or.jp/publica/dayori/dayori97.05/doukou2-j.htmlより)
 これなどは、電荷がつくる電位とその電界が画像を形成するわけであるから、場の理論そのものである。従って、物理的な意味を持ってラプラシアンなどを導入することができるだろう。そうすれば、単なる輪郭強調などだけでなく、新たな知見も得られると思う。
 また、逆問題のようであるが電界・電荷分布測定などを目的として液晶のボッケルス効果を用いることも多い。液晶を用いて得られる画像から、電界分布や電荷分布を計測するわけである。これなども画像と場の理論が直に結びついている一例である。

 参考に、SHARPのプラズマアドレスディスプレイを示しておく。

SHARPのプラズマアドレスディスプレイ(PALC)
(画像のリンク先はhhttp://ns3.sharp.co.jp/sc/event/events/ele97/text/palc.htmより)

 また、電子写真装置などは感光体表面に電荷分布を形成し、その電位像をトナーという電荷粒子で可視化するのであるから、電磁場を用いて画像形成をしているわけである。だから、場の理論を持ちこむのは至極当然であり、有用性も非常に高いだろう。そういった視点で考察してみたのが、

である。

 同様に、画像圧縮に関しても、画像形成の物理性に着目することで実現できる場合も多いと思うのであるが、それは次回にしておく。

2004-04-24[n年前へ]

「ふりだし」に戻る 

 「40才からの英語」とか「大人のための科学」なんていう本をよく見かける。もう一度、「ふりだし」に戻って、一から勉強してみるというのは結構楽しいものなのかもしれない。

 いつだったか、何かの場で英語授業の話になった時にこんな話を聞いた。

英語とかって「積み重ね」が必要じゃないですか。それだと、一回授業がわからなくなっちゃうと、もうずっとわかんないの。だから、英語の授業なんてずっとつまらなかった。だから、数学の微積分とかって好きだったかな。それまでの数学がよくわからなくなったのは、ちょっと横に置いといて何だかもう一度ゼロから始めることができたような気がしたから。だから、難しいように思えても、数学の微積分とかって好きだったかな。
 そういうものかもしれないな、と思う。英語の授業じゃないけれど、たいていのことは「積み重ね」が大切で、もう一度ゼロから始めるなんてことはできなかったりするからこそ、色んな「ふりだし」に戻る、があるということも良いのかも。だから、人は「ふりだし」を探して遠くに行ったりもするのだろうけれど。



■Powered by yagm.net